Visualizing Time Series Data in Python
Thomas Vincent
Head of Data Science, Getty Images
In this plot, the default matplotlib
color scheme assigns the same color to the beef
and turkey
time series.
ax = df.plot(colormap='Dark2', figsize=(14, 7))
ax.set_xlabel('Date')
ax.set_ylabel('Production Volume (in tons)')
plt.show()
For the full set of available colormaps, click here.
ax = df.plot(colormap='Dark2', figsize=(14, 7))
df_summary = df.describe() # Specify values of cells in the table ax.table(cellText=df_summary.values, # Specify width of the table colWidths=[0.3]*len(df.columns), # Specify row labels rowLabels=df_summary.index, # Specify column labels colLabels=df_summary.columns, # Specify location of the table loc='top') plt.show()
df.plot(subplots=True,
linewidth=0.5,
layout=(2, 4),
figsize=(16, 10),
sharex=False,
sharey=False)
plt.show()
Visualizing Time Series Data in Python