Beyond summary statistics

Visualizing Time Series Data in Python

Thomas Vincent

Head of Data Science, Getty Images

Facet plots of the jobs dataset

jobs.plot(subplots=True,
            layout=(4, 4),
            figsize=(20, 16),
            sharex=True,
            sharey=False)

plt.show()

Visualizing Time Series Data in Python

Facet plots of the jobs dataset

Visualizing Time Series Data in Python

Annotating events in the jobs dataset

ax = jobs.plot(figsize=(20, 14), colormap='Dark2')

ax.axvline('2008-01-01', color='black', linestyle='--') ax.axvline('2009-01-01', color='black', linestyle='--')
Visualizing Time Series Data in Python

Facet plots of the jobs dataset

Visualizing Time Series Data in Python

Taking seasonal average in the jobs dataset

print(jobs.index)
DatetimeIndex(['2000-01-01', '2000-02-01', '2000-03-01', 
'2000-04-01', '2009-09-01','2009-10-01', 
'2009-11-01', '2009-12-01','2010-01-01', '2010-02-01'], 
dtype='datetime64[ns]', name='datestamp',
length=122, freq=None)
index_month = jobs.index.month
jobs_by_month = jobs.groupby(index_month).mean()
print(jobs_by_month)
datestamp    Agriculture  Business services  Construction                                        
1            13.763636           7.863636     12.909091   
2            13.645455           7.645455     13.600000   
3            13.830000           7.130000     11.290000   
4             9.130000           6.270000      9.450000   
5             7.100000           6.600000      8.120000   
...
Visualizing Time Series Data in Python

Monthly averages in the jobs dataset

ax = jobs_by_month.plot(figsize=(12, 5),
colormap='Dark2')
ax.legend(bbox_to_anchor=(1.0, 0.5), 
loc='center left')
Visualizing Time Series Data in Python

Monthly averages in the jobs dataset

Monthly averages in the jobs dataset

Visualizing Time Series Data in Python

Time to practice!

Visualizing Time Series Data in Python

Preparing Video For Download...