Visualizing Time Series Data in Python
Thomas Vincent
Head of Data Science, Getty Images
An isolated time series
date | ts1 |
---|---|
1949-01 | 112 |
1949-02 | 118 |
1949-03 | 132 |
A file with multiple time series
date | ts1 | ts2 | ts3 | ts4 | ts5 | ts6 | ts7 |
---|---|---|---|---|---|---|---|
2012-01-01 | 2113.8 | 10.4 | 1987.0 | 12.1 | 3091.8 | 43.2 | 476.7 |
2012-02-01 | 2009.0 | 9.8 | 1882.9 | 12.3 | 2954.0 | 38.8 | 466.8 |
2012-03-01 | 2159.8 | 10.0 | 1987.9 | 14.3 | 3043.7 | 40.1 | 502.1 |
import pandas as pd
meat = pd.read_csv("meat.csv")
print(meat.head(5))
date beef veal pork lamb_and_mutton broilers
0 1944-01-01 751.0 85.0 1280.0 89.0 NaN
1 1944-02-01 713.0 77.0 1169.0 72.0 NaN
2 1944-03-01 741.0 90.0 1128.0 75.0 NaN
3 1944-04-01 650.0 89.0 978.0 66.0 NaN
4 1944-05-01 681.0 106.0 1029.0 78.0 NaN
other_chicken turkey
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 NaN NaN
4 NaN NaN
import matplotlib.pyplot as plt
plt.style.use('fivethirtyeight')
ax = df.plot(figsize=(12, 4), fontsize=14)
plt.show()
import matplotlib.pyplot as plt
plt.style.use('fivethirtyeight')
ax = df.plot.area(figsize=(12, 4), fontsize=14)
plt.show()
Visualizing Time Series Data in Python