The parts needed for Bayesian inference

Fundamentals of Bayesian Data Analysis in R

Rasmus Bååth

Data Scientist

Fundamentals of Bayesian Data Analysis in R

Fundamentals of Bayesian Data Analysis in R

Fundamentals of Bayesian Data Analysis in R

Fundamentals of Bayesian Data Analysis in R

Fundamentals of Bayesian Data Analysis in R

What is a generative model?

Fundamentals of Bayesian Data Analysis in R

Generative zombie drug model


Fundamentals of Bayesian Data Analysis in R

Generative zombie drug model

# Parameters
prop_success <- ???
n_zombies <- ???
Fundamentals of Bayesian Data Analysis in R

Generative zombie drug model

# Parameters
prop_success <- 0.15
n_zombies <- 13
Fundamentals of Bayesian Data Analysis in R

Generative zombie drug model

# Parameters
prop_success <- 0.15
n_zombies <- 13
# Simulating data
data <- c()
for(zombie in 1:n_zombies) {
  data[zombie] <- ???
}
Fundamentals of Bayesian Data Analysis in R

Generative zombie drug model

# Parameters
prop_success <- 0.15
n_zombies <- 13
# Simulating data
data <- c()
for(zombie in 1:n_zombies) {
  data[zombie] <- runif(1, min = 0, max = 1) < prop_success
}
Fundamentals of Bayesian Data Analysis in R

Generative zombie drug model

# Parameters
prop_success <- 0.15
n_zombies <- 13
# Simulating data
data <- c()
for(zombie in 1:n_zombies) {
  data[zombie] <- runif(1, min = 0, max = 1) < prop_success}
data
FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE
Fundamentals of Bayesian Data Analysis in R

Generative zombie drug model

# Parameters
prop_success <- 0.15
n_zombies <- 13
# Simulating data
data <- c()
for(zombie in 1:n_zombies) {
  data[zombie] <- runif(1, min = 0, max = 1) < prop_success
}
data <- as.numeric(data)
Fundamentals of Bayesian Data Analysis in R

Generative zombie drug model

# Parameters
prop_success <- 0.15
n_zombies <- 13
# Simulating data
data <- c()
for(zombie in 1:n_zombies) {
  data[zombie] <- runif(1, min = 0, max = 1) < prop_success
}
data <- as.numeric(data)
data
0 0 0 1 0 0 0 0 1 0 1 0 0
Fundamentals of Bayesian Data Analysis in R

Generative zombie drug model

# Parameters
prop_success <- 0.15
n_zombies <- 13
# Simulating data
data <- c()
for(zombie in 1:n_zombies) {
  data[zombie] <- runif(1, min = 0, max = 1) < prop_success
}
data <- as.numeric(data)
data
0 0 1 0 0 0 0 0 0 0 0 0 0
Fundamentals of Bayesian Data Analysis in R

Generative zombie drug model

# Parameters
prop_success <- 0.15
n_zombies <- 13
# Simulating data
data <- c()
for(zombie in 1:n_zombies) {
  data[zombie] <- runif(1, min = 0, max = 1) < prop_success
}
data <- as.numeric(data)
data
0 1 0 1 1 0 0 1 0 1 0 0 0
Fundamentals of Bayesian Data Analysis in R

Generative zombie drug model

# Parameters
prop_success <- 0.15
n_zombies <- 13
# Simulating data
data <- c()
for(zombie in 1:n_zombies) {
  data[zombie] <- runif(1, min = 0, max = 1) < prop_success
}
data <- as.numeric(data)
data
0 0 0 0 0 0 0 1 0 0 0 0 0
Fundamentals of Bayesian Data Analysis in R

Generative zombie drug model

# Parameters
prop_success <- 0.15
n_zombies <- 13
# Simulating data
data <- c()
for(zombie in 1:n_zombies) {
  data[zombie] <- runif(1, min = 0, max = 1) < prop_success
}
data <- as.numeric(data)
data
0 0 0 0 1 0 0 0 0 1 0 1 0
Fundamentals of Bayesian Data Analysis in R

Take this model for a spin!

Fundamentals of Bayesian Data Analysis in R

Preparing Video For Download...