Fundamentals of Bayesian Data Analysis in R
Rasmus Bååth
Data Scientist
n_samples <- 100000
n_ads_shown <- 100
proportion_clicks <- runif(n_samples, min = 0.0, max = 0.2)
n_visitors <- rbinom(n = n_samples, size = n_ads_shown,
prob = proportion_clicks)
n_samples <- 100000
n_ads_shown <- 100
proportion_clicks <- runif(n_samples, min = 0.0, max = 0.2)
n_visitors <- rbinom(n = n_samples, size = n_ads_shown,
prob = proportion_clicks)
prior <- data.frame(proportion_clicks, n_visitors)
prior
proportion_clicks n_visitors
1 0.12 10
2 0.04 3
3 0.11 14
4 0.15 14
5 0.15 12
6 0.16 13
7 0.04 6
8 0.04 3
9 0.09 10
10 0.04 3
11 0.08 8
12 0.13 12
13 0.02 3
14 0.18 19
15 0.04 5
16 0.10 10
... ... ...
Bayesian inference is conditioning on data, in order to learn about parameter values.
Fundamentals of Bayesian Data Analysis in R