Fundamentals of Bayesian Data Analysis in R
Rasmus Bååth
Data Scientist
pars
mu sigma probability
17.5 1.9 0.0001
18.0 1.9 0.0003
18.5 1.9 0.0014
19.0 1.9 0.0043
19.5 1.9 0.0094
20.0 1.9 0.0142
20.5 1.9 0.0151
21.0 1.9 0.0112
21.5 1.9 0.0058
22.0 1.9 0.0021
... ... ...
sample_indices <- sample(1:nrow(pars), size = 10000,
replace = TRUE, prob = pars$probability)
sample_indices <- sample(1:nrow(pars), size = 10000,
replace = TRUE, prob = pars$probability)
head(sample_indices)
430 428 1010 383 343 385
pars_sample <- pars[sample_indices, c("mu", "sigma")]
head(pars_sample)
mu sigma
1 20.0 2.8
2 19.0 2.8
3 17.5 6.7
4 19.0 2.5
5 21.5 2.2
6 20.0 2.5
7 20.0 2.8
8 20.5 1.6
9 19.0 2.5
10 17.0 4.0
hist(pars_sample$mu, 30)
quantile(pars_sample$mu, c(0.05, 0.95))
5% 95%
17.5 22.5
pred_temp <- rnorm(10000, mean = , sd = )
pred_temp <- rnorm(10000, mean = pars_sample$mu, sd = pars_sample$sigma)
pred_temp <- rnorm(10000, mean = pars_sample$mu, sd = pars_sample$sigma)
hist(pred_temp, 30)
pred_temp <- rnorm(10000, mean = pars_sample$mu, sd = pars_sample$sigma)
hist(pred_temp, 30)
sum(pred_temp >= 18) / length(pred_temp )
0.73
Fundamentals of Bayesian Data Analysis in R