Inference for Categorical Data in R
Andrew Bray
Assistant Professor of Statistics at Reed College
gss2016 %>%
select(party, natarms) %>%
glimpse()
Observations: 150
Variables: 2
$ party <fct> Ind, Ind, Dem, Ind, Ind, Ind, Ind, Dem, Dem, Ind,...
$ natarms <fct> TOO LITTLE, TOO MUCH, TOO MUCH,...
ggplot(gss2016, aes(x = party, fill = natarms)) +
geom_bar(position = "fill")
ggplot(gss2016, aes(x = party, fill = natarms)) +
geom_bar()
library(broom)
tab <- gss2016 %>%
select(natarms, party) %>%
table()
tab
party
natarms Dem Ind Rep Oth
TOO LITTLE 17 20 24 0
ABOUT RIGHT 14 28 8 1
TOO MUCH 12 24 2 0
tab <- gss2016 %>%
select(natarms, party) %>%
table()
tab
party
natarms Dem Ind Rep Oth
TOO LITTLE 17 20 24 0
ABOUT RIGHT 14 28 8 1
TOO MUCH 12 24 2 0
tab %>%
tidy()
# A tibble: 12 x 3
natarms party n
<chr> <chr> <int>
1 TOO LITTLE Dem 17
2 ABOUT RIGHT Dem 14
3 TOO MUCH Dem 12
4 TOO LITTLE Ind 20
5 ABOUT RIGHT Ind 28
6 TOO MUCH Ind 24
7 TOO LITTLE Rep 24
8 ABOUT RIGHT Rep 8
9 TOO MUCH Rep 2
10 TOO LITTLE Oth 0
11 ABOUT RIGHT Oth 1
12 TOO MUCH Oth 0
tab <- gss2016 %>%
select(natarms, party) %>%
table()
tab
party
natarms Dem Ind Rep Oth
TOO LITTLE 17 20 24 0
ABOUT RIGHT 14 28 8 1
TOO MUCH 12 24 2 0
tab %>%
tidy() %>%
uncount(n)
# A tibble: 150 x 2
natarms party
<chr> <chr>
1 TOO LITTLE Dem
2 TOO LITTLE Dem
3 TOO LITTLE Dem
4 TOO LITTLE Dem
5 TOO LITTLE Dem
6 TOO LITTLE Dem
7 TOO LITTLE Dem
8 TOO LITTLE Dem
9 TOO LITTLE Dem
10 TOO LITTLE Dem
# … with 140 more rows
Inference for Categorical Data in R