Interactive Data Visualization with plotly in R
Adam Loy
Statistician, Carleton College
glimpse(wine)
Rows: 178
Columns: 14
$ Type <fct> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...
$ Alcohol <dbl> 14.23, 13.20, 13.16, 14.37, 13.24, 14.20, 14.3...
$ Malic <dbl> 1.71, 1.78, 2.36, 1.95, 2.59, 1.76, 1.87, 2.15...
$ Ash <dbl> 2.43, 2.14, 2.67, 2.50, 2.87, 2.45, 2.45, 2.61...
$ Alcalinity <dbl> 15.6, 11.2, 18.6, 16.8, 21.0, 15.2, 14.6, 17.6...
$ Magnesium <int> 127, 100, 101, 113, 118, 112, 96, 121, 97, 98,...
...
$ Color <dbl> 5.64, 4.38, 5.68, 7.80, 4.32, 6.75, 5.25, 5.05...
$ Hue <dbl> 1.04, 1.05, 1.03, 0.86, 1.04, 1.05, 1.02, 1.06...
$ Dilution <dbl> 3.92, 3.40, 3.17, 3.45, 2.93, 2.85, 3.58, 3.58...
$ Proline <int> 1065, 1050, 1185, 1480, 735, 1450, 1290, 1295,...
data %>%
plot_ly() %>%
add_trace(
type = 'splom',
dimensions = list(
list(label='string-1', values=~X1),
list(label='string-2', values=~X2),
.
.
.
list(label='string-n', values=~Xn))
)
add_trace()
to specify variables'splom'
trace type = scatterplot matrixwine %>%
plot_ly() %>%
add_trace(
type = 'splom',
dimensions = list(
list(label='Alcohol', values=~Alcohol),
list(label='Flavonoids', values=~Flavanoids),
list(label='Color', values=~Color)
)
)
wine %>%
plot_ly(color = ~Type) %>%
add_trace(
type = 'splom',
dimensions = list(
list(label='Alcohol', values=~Alcohol),
list(label='Flavonoids', values=~Flavanoids),
list(label='Color', values=~Color)
)
)
Interactive Data Visualization with plotly in R