Visualizing Big Data with Trelliscope in R
Ryan Hafen
Author, TrelliscopeJS
All variables in the data passed in to ggplot()
are inspected for use as cognostics.
gap <- gapminder %>% group_by(country) %>% mutate(latestLifeExp = tail(lifeExp, 1))
gap
# A tibble: 1,704 x 7
# Groups: country [142]
country continent year lifeExp pop gdpPercap latestLifeExp
<fct> <fct> <int> <dbl> <int> <dbl> <dbl>
1 Afghanistan Asia 1952 28.8 8425333 779 43.8
2 Afghanistan Asia 1957 30.3 9240934 821 43.8
3 Afghanistan Asia 1962 32.0 10267083 853 43.8
4 Afghanistan Asia 1967 34.0 11537966 836 43.8
5 Afghanistan Asia 1972 36.1 13079460 740 43.8
6 Afghanistan Asia 1977 38.4 14880372 786 43.8
# ... with 1,698 more rows
gap <- gapminder %>%
group_by(country, continent) %>%
mutate(wiki = paste0("https://en.wikipedia.org/wiki/", country))
A function cog()
can be wrapped around a variable to fine-tune how a cognostic is handled in Trelliscope.
With cog()
, some of the most useful things you can specify include:
desc
: a meaningful description for the cognosticdefault_label
: a boolean specifying whether the cognostic should be shown as a label by default or notgap$wiki <- cog_href(gap$wiki,
desc = "Link to wikipedia",
default_label = TRUE)
Visualizing Big Data with Trelliscope in R