Communicating with Data in the Tidyverse
Timo Grossenbacher
Data Journalist
ggplot2
.ilo_data$country
Austria Belgium Czech Rep. Finland
France Germany Hungary ...
...
17 Levels: Austria Belgium Czech Rep. Finland France ... United Kingdom
library(forcats)
fct_drop
for dropping levels fct_rev
for reversing factor levelsfct_reorder
for reordering them.ilo_data
# A tibble: 34 x 4
country year hourly_compensation working_hours
<fct> <fct> <dbl> <dbl>
1 Austria 1996 24.75 31.99808
2 Austria 2006 30.46 31.81731
3 Belgium 1996 25.25 31.65385
4 Belgium 2006 31.85 30.21154
ilo_data <- ilo_data %>%
mutate(country = fct_reorder(country, working_hours, mean))
ilo_data$country
17 Levels: Netherlands Norway Germany Sweden ... Czech Rep.
ggplot(ilo_data) +
geom_path(aes(...)) +
geom_text(
aes(...,
hjust = ifelse(year == "2006",
1.4,
-0.4)
)
)
Communicating with Data in the Tidyverse