Communicating with Data in the Tidyverse
Timo Grossenbacher
Data Journalist
ilo_data %>%
filter(country == "Switzerland")
# A tibble: 27 x 4
country year hourly_compensation working_hours
<fct> <fct> <dbl> <dbl>
1 Switzerland 1980 10.96 34.70385
2 Switzerland 1981 10.01 34.33462
3 Switzerland 1982 10.31 34.12308
4 Switzerland 1983 10.33 33.84231
5 Switzerland 1984 9.52 33.47885
6 Switzerland 1985 9.55 33.35961
7 Switzerland 1986 13.62 33.19615
8 Switzerland 1987 16.90 33.17308
9 Switzerland 1988 17.81 33.16269
10 Switzerland 1989 16.54 32.87308
# ... with 17 more rows
ilo_data %>%
filter(country %in% c("Sweden", "Switzerland"))
# A tibble: 54 x 4
country year hourly_compensation working_hours
<fct> <fct> <dbl> <dbl>
1 Sweden 1980 12.40 29.16923
2 Switzerland 1980 10.96 34.70385
3 Sweden 1981 11.70 29.00769
4 Switzerland 1981 10.01 34.33462
5 Sweden 1982 9.99 29.27885
# ... with 49 more rows
...equivalent to:
ilo_data %>%
filter(country == "Sweden" | country == "Switzerland")
plot_data <-
ilo_data %>%
filter(year == 2006)
ggplot(plot_data) +
geom_histogram(
aes(x = working_hours))
plot_data <-
ilo_data %>%
filter(year == 2006)
ggplot(plot_data) +
geom_histogram(
aes(x = hourly_compensation))
ilo_data %>%
group_by(country) %>%
summarize(median_working_hours = median(working_hours))
# A tibble: 17 x 2
country median_working_hours
<fct> <dbl>
1 Austria 31.69904
2 Belgium 32.03846
3 Czech Rep. 39.10000
4 Finland 34.04808
5 France 32.34615
# ... with 12 more rows
Communicating with Data in the Tidyverse