Introduction to Linear Modeling in Python
Jason Vestuto
Data Scientist
# Use sample as model for population
population_model = august_daily_highs_for_2017
# Simulate repeated data acquisitions by resampling the "model"
for nr in range(num_resamples):
bootstrap_sample = np.random.choice(population_model, size=resample_size, replace=True)
bootstrap_means[nr] = np.mean(bootstrap_sample)
# Compute the mean of the bootstrap resample distribution
estimate_temperature = np.mean(bootstrap_means)
# Compute standard deviation of the bootstrap resample distribution
estimate_uncertainty = np.std(bootstrap_means)
# Define the sample of notes
sample = ['A', 'B', 'C', 'D', 'E', 'F', 'G']
# Replace = True, repeats are allowed
bootstrap_sample = np.random.choice(sample, size=4, replace=True)
print(bootstrap_sample)
C C F G
# Replace = False
bootstrap_sample = np.random.choice(sample, size=4, replace=False)
print(bootstrap_sample)
C G A F
# Replace = True, more lengths are allowed
bootstrap_sample = np.random.choice(sample, size=16, replace=True)
print(bootstrap_sample)
C C F G C G A E F D G B B A E C
Introduction to Linear Modeling in Python