Modeling with Data in the Tidyverse
Albert Y. Kim
Assistant Professor of Statistical and Data Sciences
Two models with different pairs of explanatory/predictor variables:
# Model 1 - Two numerical: model_price_1 <- lm(log10_price ~ log10_size + yr_built, data = house_prices)
# Model 3 - One numerical & one categorical: model_price_3 <- lm(log10_price ~ log10_size + condition, data = house_prices)
# Model 1
model_price_1 <- lm(log10_price ~ log10_size + yr_built,
data = house_prices)
get_regression_points(model_price_1) %>%
mutate(sq_residuals = residual^2) %>%
summarize(sum_sq_residuals = sum(sq_residuals))
# A tibble: 1 x 1
sum_sq_residuals
<dbl>
1 585.
# Model 3
model_price_3 <- lm(log10_price ~ log10_size + condition,
data = house_prices)
get_regression_points(model_price_3) %>%
mutate(sq_residuals = residual^2) %>%
summarize(sum_sq_residuals = sum(sq_residuals))
# A tibble: 1 x 1
sum_sq_residuals
<dbl>
1 608.
Modeling with Data in the Tidyverse