Conclusion - Where to go from here?

Modeling with Data in the Tidyverse

Albert Y. Kim

Assistant Professor of Statistical and Data Sciences

R source code for all videos

Modeling with Data in the Tidyverse

Other Tidyverse courses

Available here and here

Tidyverse Fundamentals Track

Intermediate Tidyverse Toolbox Track

Modeling with Data in the Tidyverse

Refresher: General modeling framework

  • In general: $y = f(\vec{x}) + \epsilon$
  • Linear regression models: $y = \beta_0 + \beta_1 \cdot x_1 + \epsilon$
Modeling with Data in the Tidyverse

Parallel slopes model

Modeling with Data in the Tidyverse

Polynomial model

Modeling with Data in the Tidyverse

Tree models

Modeling with Data in the Tidyverse

DataCamp courses using other models

Courses with different $f()$ in $y = f(\vec{x}) + \epsilon$:

Modeling with Data in the Tidyverse

Refresher: Regression table

# Fit model:
model_score_1 <- lm(score ~ age, data = evals)

# Output regression table:
get_regression_table(model_score_1)
# A tibble: 2 x 7
  term      estimate std_error statistic p_value lower_ci upper_ci
  <chr>        <dbl>     <dbl>     <dbl>   <dbl>    <dbl>    <dbl>
1 intercept    4.46      0.127     35.2    0        4.21     4.71 
2 age         -0.006     0.003     -2.31   0.021   -0.011   -0.001
Modeling with Data in the Tidyverse

ModernDive: Online textbook

  • Uses tidyverse tools: ggplot2 and dplyr
  • Expands on the regression models from this course
  • Uses evals and house_prices datasets (and more)
  • Goal: Statistical inference via data science
  • Available at ModernDive.com
Modeling with Data in the Tidyverse

Good luck!

Modeling with Data in the Tidyverse

Preparing Video For Download...