Forecasting Product Demand in R
Aric LaBarr, Ph.D.
Senior Data Scientist, Elder Research
M_hi_arima <- auto.arima(M_hi_full_res)
summary(M_hi_arima)
Series: M_hi_full_res
ARIMA(2,0,1) with zero mean
Coefficients:
ar1 ar2 ma1
1.0077 -0.5535 -0.4082
s.e. 0.1291 0.0800 0.1412
sigma^2 estimated as 0.01078: log likelihood=131.45
AIC=-254.9 AICc=-254.63 BIC=-242.75
for_M_hi_arima <- forecast(M_hi_arima, h = 22)
dates_valid <- seq(as.Date("2017-01-01"), length = 22, by = "weeks") for_M_hi_arima <- xts(for_M_hi_arima$mean, order.by = dates_valid)
head(for_M_hi_arima, n = 5)
[,1]
2017-01-01 0.13888498
2017-01-08 -0.09448731
2017-01-15 -0.17209098
2017-01-22 -0.12112306
2017-01-29 -0.02680729
plot(for_M_hi_arima)
Forecasting Product Demand in R