Machine Learning for Marketing Analytics in R
Verena Pflieger
Data Scientist at INWT Statistics
cbind(dataSurv %>% select(tenure, churn),
surv = Surv(dataSurv$tenure, dataSurv$churn)) %>% head(10)
tenure churn surv
1 1 0 1+
2 34 0 34+
3 2 1 2
4 45 0 45+
5 2 1 2
6 8 1 8
7 22 0 22+
8 10 0 10+
9 28 1 28
10 16 0 16+
fitKM <- survfit(Surv(dataSurv$tenure, dataSurv$churn) ~ 1,
type = "kaplan-meier")
fitKM$surv
[1] 0.9284504 0.9045343 0.8859371 0.8692175 0.8561374
[6] 0.8478775 0.8372294 0.8283385 0.8184671 0.8086794
[11] 0.8018542 0.7933760 0.7847721 0.7792746 0.7707060
[16] 0.7641548 0.7580075 0.7522632 0.7476436 0.7432153
[21] 0.7389925 0.7321989 0.7288777 0.7228883 0.7168003
[26] 0.7127809 0.7092320 0.7059049 0.7016930 ...
print(fitKM)
Call: survfit(formula = Surv(dataSurv$tenure, dataSurv$churn) ~ 1,
type = "kaplan-meier")
n events median 0.95LCL 0.95UCL
5311 1869 70 68 72
plot(fitKM)
fitKMstr <- survfit(Surv(tenure, churn) ~ Partner, data = dataSurv)
print(fitKMstr)
Call: survfit(formula = Surv(tenure, churn) ~ Partner,
data = dataSurv)
n events median 0.95LCL 0.95UCL
Partner=No 2828 1200 45 41 50
Partner=Yes 2483 669 NA NA NA
plot(fitKMstr, lty = 2:3)
legend(10, .5, c("No", "Yes"), lty = 2:3)
Machine Learning for Marketing Analytics in R