Machine Learning for Marketing Analytics in R
Verena Pflieger
Data Scientist at INWT Statistics
logitModelFull <- glm(returnCustomer ~ title + newsletter +
websiteDesign + ..., family = binomial, churnData)
summary(logitModelFull)
## Coefficients:
## Estimate Std.Error z value Pr(>|z|)
## (Intercept) -1.49074 0.04930 -30.239 < 2e-16 ***
## titleCompany -0.21215 0.05286 -4.013 5.99e-05 ***
## titleMrs 0.03086 0.02953 1.045 0.29586
## newsletter1 0.52373 0.03031 17.280 < 2e-16 ***
## websiteDesign2 -0.45679 0.16267 -2.808 0.00498 **
## websiteDesign3 -0.28800 0.15899 -1.811 0.07007 .
## paymentMethodCredidCard -0.24192 0.04843 -4.995 5.89e-07 ***
## tvEquipment -0.51475 1.08141 -0.476 0.63408
...
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
...
## AIC: 41762
## Coefficients:
## Estimate Std.Error z value Pr(>|z|)
## ...
## newsletter1 0.52373 0.03031 17.280 < 2e-16 ***
## ...
Log odds equation: $\displaystyle \log \frac{P(\text{returnCustomer}=1)}{P(\text{returnCustomer}=0)} = $ $-1.49 - 0.21 \cdot \text{titleCompany} + 0.52 \cdot \text{newsletter1} + ... $
Transformation to odds:
coefsExp <- coef(logitModelFull) %>% exp() %>% round(2)
coefsExp
## (Intercept) titleCompany titleMrs titleOthers
## 0.23 0.81 1.03 1.77
## newsletter1 websiteDesign2 ...
## 1.69 0.63 ...
library(MASS)
logitModelNew <- stepAIC(logitModelFull, trace = 0)
summary(logitModelNew)
## Coefficients:
## Estimate Std.Error z value Pr(>|z|)
## (Intercept) -1.49130 0.04928 -30.260 < 2e-16 ***
## titleCompany -0.21131 0.05285 -3.998 6.38e-05 ***
## titleMrs 0.03159 0.02951 1.071 0.28432
## newsletter1 0.52332 0.03030 17.269 < 2e-16 ***
...
## videogameDownload 0.26474 0.05256 5.037 4.74e-07 ***
## prodRemitted 0.89528 0.07619 11.751 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
...
## AIC: 41756
Removed Variables | Remaining Variables |
---|---|
tvEquipment | newsletter |
prodOthers | paymentMethod |
dvd | |
blueray | |
... |
Machine Learning for Marketing Analytics in R