Machine Learning for Time Series Data in Python
Chris Holdgraf
Fellow, Berkeley Institute for Data Science




| Datapoint | Datapoint | Datapoint | Datapoint | Datapoint | Datapoint | 
|---|---|---|---|---|---|
| 1 | 34 | 12 | 54 | 76 | 40 | 
| Timepoint | Timepoint | Timepoint | Timepoint | Timepoint | Timepoint | 
|---|---|---|---|---|---|
| 2:00 | 2:01 | 2:02 | 2:03 | 2:04 | 2:05 | 
| Timepoint | Timepoint | Timepoint | Timepoint | Timepoint | Timepoint | 
|---|---|---|---|---|---|
| Jan | Feb | March | April | May | Jun | 
| Timepoint | Timepoint | Timepoint | Timepoint | Timepoint | Timepoint | 
|---|---|---|---|---|---|
| 1e-9 | 2e-9 | 3e-9 | 4e-9 | 5e-9 | 6e-9 | 
import pandas as pd
import matplotlib.pyplot as plt
data = pd.read_csv('data.csv')
data.head()
          date symbol       close       volume
0   2010-01-04   AAPL  214.009998  123432400.0
46  2010-01-05   AAPL  214.379993  150476200.0
92  2010-01-06   AAPL  210.969995  138040000.0
138 2010-01-07   AAPL  210.580000  119282800.0
184 2010-01-08   AAPL  211.980005  111902700.0
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(12, 6))
data.plot('date', 'close', ax=ax)
ax.set(title="AAPL daily closing price")

We can use really big data and really complicated data

We can...



Machine Learning for Time Series Data in Python