Linear Classifiers in Python
Michael (Mike) Gelbart
Instructor, The University of British Columbia
lr_weak_reg = LogisticRegression(C=100) lr_strong_reg = LogisticRegression(C=0.01)
lr_weak_reg.fit(X_train, y_train) lr_strong_reg.fit(X_train, y_train)
lr_weak_reg.score(X_train, y_train) lr_strong_reg.score(X_train, y_train)
1.0
0.92
$\text{regularized loss = original loss + large coefficient penalty}$
lr_weak_reg.score(X_test, y_test)
0.86
lr_strong_reg.score(X_test, y_test)
0.88
$\text{regularized loss = original loss + large coefficient penalty}$
lr_L1 = LogisticRegression(solver='liblinear', penalty='l1')
lr_L2 = LogisticRegression() # penalty='l2' by default
lr_L1.fit(X_train, y_train)
lr_L2.fit(X_train, y_train)
plt.plot(lr_L1.coef_.flatten())
plt.plot(lr_L2.coef_.flatten())
Linear Classifiers in Python