HR Analytics: Predicting Employee Churn in R
Abhishek Trehan
People Analytics Practitioner
Basic variables: Set of variables available directly in a dataset
Derived variables: Set of variables derived using data transformation of basic variables
$$ \text{Job-hop index} = \frac{\text{Total experience}}{\text{Number of companies worked}} $$
Tenure: duration of employment
Inactive employees tenure
date_joining & last_working_date
date_joining & cutoff_date
# Coercing date variables from dd/mm/yyyy format
library(lubridate)
org_final %>%
mutate(date_of_joining = dmy(date_of_joining),
cutoff_date = dmy(cutoff_date),
last_working_date = dmy(last_working_date))
# Computing time span in years
library(lubridate)
date_1 <- ymd("2000-01-01")
date_2 <- ymd("2014-08-09")
time_length(interval(date_1, date_2), "years")
14.60274
HR Analytics: Predicting Employee Churn in R