HR Analytics: Predicting Employee Churn in R
Anurag Gupta
People Analytics Practitioner
# Load tidypredict
library(tidypredict)
# Calculate probability of turnover
emp_risk <- emp_final %>%
filter(status == "Active") %>%
# Add predictions using the final model
tidypredict_to_column(final_log)
# Look at the employee's probability of turnover
emp_risk %>%
select(emp_id, fit) %>%
slice_max(n = 5, fit)
# A tibble: 5 x 2
emp_id fit
<chr> <dbl>
E202 0.9694593
E6475 0.9814252
E6574 0.9983320
E7105 0.9193704
E9878 0.9371767
# Create turnover risk buckets
emp_risk_bucket <- emp_risk %>%
mutate(risk_bucket = cut(fit, breaks = c(0, 0.5, 0.6, 0.8, 1),
labels = c("no-risk", "low-risk",
"medium-risk", "high-risk")))
HR Analytics: Predicting Employee Churn in R