Marketing Analytics: Predicting Customer Churn in Python
Mark Peterson
Director of Data Science, Infoblox
telco['Churn'].value_counts()
no 2850
yes 483
Name: Churn, dtype: int64
Metric | Formula |
---|---|
Precision | True Positives / (True Positives + False Positives) |
Metric | Formula |
---|---|
Recall/Sensitivity | True Positives / (True Positives + False Negatives) |
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
Marketing Analytics: Predicting Customer Churn in Python