Marketing Analytics: Predicting Customer Churn in Python
Mark Peterson
Director of Data Science, Infoblox
from sklearn.svm import SVC
svc = SVC()
svc.fit(telco['data'], telco['target'])
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3, gamma='scale', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)
Parameter | Purpose |
---|---|
n_estimators | Number of trees |
criterion | Quality of Split |
max_features | Number of features for best split |
max_depth | Max depth of tree |
min_sample_splits | Minimum samples to split node |
bootstrap | Whether Bootstrap samples are used |
from sklearn.model_selection import GridSearchCV
param_grid = {'n_estimators': np.arange(10, 51)}
clf_cv = GridSearchCV(RandomForestClassifier(), param_grid)
clf_cv.fit(X, y)
clf_cv.best_params_
{'n_estimators': 43}
clf_cv.best_score_
0.9237923792379238
Marketing Analytics: Predicting Customer Churn in Python