Marketing Analytics: Predicting Customer Churn in Python
Mark Peterson
Director of Data Science, Infoblox
seaborn
library allows you to easily create informative and attractive plots
Builds on top of matplotlib
import matplotlib.pyplot as plt import seaborn as sns
sns.distplot(telco['Account_Length'])
plt.show()
sns.boxplot(x = 'Churn',
y = 'Account_Length',
data = telco)
plt.show()
sns.boxplot(x = 'Churn',
y = 'Account_Length',
data = telco)
plt.show()
sns.boxplot(x = 'Churn',
y = 'Account_Length',
data = telco)
plt.show()
sns.boxplot(x = 'Churn',
y = 'Account_Length',
data = telco)
plt.show()
sns.boxplot(x = 'Churn',
y = 'Account_Length',
data = telco)
plt.show()
sns.boxplot(x = 'Churn',
y = 'Account_Length',
data = telco)
plt.show()
sns.boxplot(x = 'Churn',
y = 'Account_Length',
data = telco)
plt.show()
sns.boxplot(x = 'Churn',
y = 'Account_Length',
data = telco,
sym="")
plt.show()
sns.boxplot(x = 'Churn',
y = 'Account_Length',
data = telco,
hue = 'Intl_Plan')
plt.show()
Marketing Analytics: Predicting Customer Churn in Python