Marketing Analytics: Predicting Customer Churn in Python
Mark Peterson
Director of Data Science, Infoblox
logreg.predict_proba(X_test)[:,1]
array([[0.80188981, 0.19811019],
[0.96484075, 0.03515925],
[0.9182671 , 0.0817329 ],
...,
y_pred_prob = logreg.predict_proba(X_test)[:,1]
from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc_curve(y_test, y_pred_prob)
import matplotlib.pyplot as plt
plt.plot(fpr, tpr)
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.plot([0, 1], [0, 1], "k--")
plt.show()
from sklearn.metrics import roc_auc_score
auc = roc_auc_score(y_test, y_pred)
Marketing Analytics: Predicting Customer Churn in Python