Nonlinear Modeling with Generalized Additive Models (GAMs) in R
Noam Ross
Senior Research Scientist, EcoHealth Alliance
model4b <- gam(hw.mpg ~ s(weight, by = fuel) + fuel,
data = mpg,
method = "REML")
model4c <- gam(hw.mpg ~ s(weight, fuel, bs = "fs"),
data = mpg,
method = "REML")
summary(model4c)
Family: gaussian
Link function: identity
Formula:
hw.mpg ~ s(weight, fuel, bs = "fs")
Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 28.644 7.615 3.761 0.000223 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
edf Ref.df F p-value
s(weight,fuel) 7.71 19 53.12 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.832 Deviance explained = 83.8%
-REML = 518.54 Scale est. = 7.9735 n = 205
plot(model4c)
vis.gam(model4c, theta = 125, plot.type = "persp")
Nonlinear Modeling with Generalized Additive Models (GAMs) in R