Nonlinear Modeling with Generalized Additive Models (GAMs) in R
Noam Ross
Senior Research Scientist, EcoHealth Alliance
$$ \LARGE y = \beta_1 x_1 + \beta_2 x_2 + \red{\beta_3 x_1 x_2} $$
$$ \LARGE y = s(x_1, x_2) $$
gam(y ~ s(x1, x2), # <-- 2 variables
data = dat, method = "REML")
gam(y ~ s(x1, x2) + s(x3),
data = dat, method = "REML")
gam(y ~ s(x1, x2) + x3 + x4,
data = dat, method = "REML")
Family: gaussian
Link function: identity
Formula:
y ~ s(x1, x2)
Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.34256 0.01646 20.82 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
edf Ref.df F p-value
s(x1,x2) 10.82 14.9 14.37 <2e-16 *** #<-- Interaction
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.519 Deviance explained = 54.5%
GCV = 0.057564 Scale est. = 0.054161 n = 200
meuse
x y cadmium copper lead zinc elev dist om ffreq ...
1 181072 333611 11.7 85 299 1022 7.909 0.00135803 13.6 1 ...
2 181025 333558 8.6 81 277 1141 6.983 0.01222430 14.0 1 ...
3 181165 333537 6.5 68 199 640 7.800 0.10302900 13.0 1 ...
4 181298 333484 2.6 81 116 257 7.655 0.19009400 8.0 1 ...
5 181307 333330 2.8 48 117 269 7.480 0.27709000 8.7 1 ...
6 181390 333260 3.0 61 137 281 7.791 0.36406700 7.8 1 ...
7 181165 333370 3.2 31 132 346 8.217 0.19009400 9.2 1 ...
8 181027 333363 2.8 29 150 406 8.490 0.09215160 9.5 1 ...
9 181060 333231 2.4 37 133 347 8.668 0.18461400 10.6 1 ...
10 181232 333168 1.6 24 80 183 9.049 0.30970200 6.3 1 ...
?sp::meuse
Nonlinear Modeling with Generalized Additive Models (GAMs) in R