Posterior prediction

Bayesian Modeling with RJAGS

Alicia Johnson

Associate Professor, Macalester College

Posterior trend

$Y \sim N(m, s^2)$
$m = a + b X$

Bayesian Modeling with RJAGS

Posterior trend

$Y \sim N(m, s^2)$
$m = a + b X$

Posterior mean trend
$m = -104.038 + 1.012 X$

Bayesian Modeling with RJAGS

Posterior trend when height = 180 cm

$Y \sim N(m, s^2)$
$m = a + b X$

Posterior mean trend
$m = -104.038 + 1.012 X$

-104.038 + 1.012 * 180
78.122
Bayesian Modeling with RJAGS

Estimating posterior trend when height = 180 cm

-104.038 + 1.012 * 180
78.122
head(weight_chains)
          a        b        s
1 -113.9029 1.072505 8.772007
2 -115.0644 1.077914 8.986393
3 -114.6958 1.077130 9.679812
4 -115.0568 1.072668 8.814403
5 -114.0782 1.071775 8.895299
6 -114.3271 1.069477 9.016185
Bayesian Modeling with RJAGS
-104.038 + 1.012 * 180
78.122
weight_chains <- weight_chains  %>% mutate(m_180 = a + b * 180)
head(weight_chains)
          a        b        s      m_180
1 -113.9029 1.072505 8.772007   79.14803
2 -115.0644 1.077914 8.986393   78.96014
3 -114.6958 1.077130 9.679812   79.18771
4 -115.0568 1.072668 8.814403   78.02352
5 -114.0782 1.071775 8.895299   78.84138
6 -114.3271 1.069477 9.016185   78.17877
-113.9029 + 1.072505 * 180
79.148
Bayesian Modeling with RJAGS

Posterior distribution of trend

-104.038 + 1.012 * 180
78.122
head(weight_chains$m_180)
79.14803
78.96014
79.18771
78.02352
78.84138
78.17877

Bayesian Modeling with RJAGS

Credible interval for posterior trend

-104.038 + 1.012 * 180
78.122
head(weight_chains$m_180)
79.14803
78.96014
79.18771
78.02352
78.84138
78.17877

quantile(weight_chains$m_180, 
    c(0.025, 0.975))
    2.5%    97.5% 
76.95054 79.23619 
Bayesian Modeling with RJAGS

Visualizing posterior trend

-104.038 + 1.012 * 180
78.122
head(weight_chains$m_180)
79.14803
78.96014
79.18771
78.02352
78.84138
78.17877

quantile(weight_chains$m_180, 
    c(0.025, 0.975))
    2.5%    97.5% 
76.95054 79.23619 
Bayesian Modeling with RJAGS

Posterior trend vs posterior prediction

Posterior mean weight (or trend) among all 180 cm tall adults

-104.038 + 1.012 * 180
78.122

Posterior predicted weight of a specific 180 cm tall adult

-104.038 + 1.012 * 180
78.122
Bayesian Modeling with RJAGS

$Y \sim N(m_{180}, s^2)$                   $m_{180} = a + b * 180$

head(weight_chains, 3)
          a        b        s      m_180
1 -113.9029 1.072505 8.772007   79.14803
2 -115.0644 1.077914 8.986393   78.96014
3 -114.6958 1.077130 9.679812   79.18771
set.seed(2000)
rnorm(n = 1, mean = 79.14803, sd = 8.772007)
71.65811
rnorm(n = 1, mean = 78.96014, sd = 8.986393)
75.78894
rnorm(n = 1, mean = 79.18771, sd = 9.679812)
87.80419
Bayesian Modeling with RJAGS

Posterior predictive distribution

Bayesian Modeling with RJAGS

Posterior prediction interval

Bayesian Modeling with RJAGS

Let's practice!

Bayesian Modeling with RJAGS

Preparing Video For Download...