Bayesian Modeling with RJAGS
Alicia Johnson
Associate Professor, Macalester College
$Y \sim N(m, s^2)$
$m = a + b X$
$Y \sim N(m, s^2)$
$m = a + b X$
Posterior mean trend
$m = -104.038 + 1.012 X$
$Y \sim N(m, s^2)$
$m = a + b X$
Posterior mean trend
$m = -104.038 + 1.012 X$
-104.038 + 1.012 * 180
78.122
-104.038 + 1.012 * 180
78.122
head(weight_chains)
a b s
1 -113.9029 1.072505 8.772007
2 -115.0644 1.077914 8.986393
3 -114.6958 1.077130 9.679812
4 -115.0568 1.072668 8.814403
5 -114.0782 1.071775 8.895299
6 -114.3271 1.069477 9.016185
-104.038 + 1.012 * 180
78.122
weight_chains <- weight_chains %>% mutate(m_180 = a + b * 180)
head(weight_chains)
a b s m_180
1 -113.9029 1.072505 8.772007 79.14803
2 -115.0644 1.077914 8.986393 78.96014
3 -114.6958 1.077130 9.679812 79.18771
4 -115.0568 1.072668 8.814403 78.02352
5 -114.0782 1.071775 8.895299 78.84138
6 -114.3271 1.069477 9.016185 78.17877
-113.9029 + 1.072505 * 180
79.148
-104.038 + 1.012 * 180
78.122
head(weight_chains$m_180)
79.14803
78.96014
79.18771
78.02352
78.84138
78.17877
-104.038 + 1.012 * 180
78.122
head(weight_chains$m_180)
79.14803
78.96014
79.18771
78.02352
78.84138
78.17877
quantile(weight_chains$m_180,
c(0.025, 0.975))
2.5% 97.5%
76.95054 79.23619
-104.038 + 1.012 * 180
78.122
head(weight_chains$m_180)
79.14803
78.96014
79.18771
78.02352
78.84138
78.17877
quantile(weight_chains$m_180,
c(0.025, 0.975))
2.5% 97.5%
76.95054 79.23619
Posterior mean weight (or trend) among all 180 cm tall adults
-104.038 + 1.012 * 180
78.122
Posterior predicted weight of a specific 180 cm tall adult
-104.038 + 1.012 * 180
78.122
$Y \sim N(m_{180}, s^2)$ $m_{180} = a + b * 180$
head(weight_chains, 3)
a b s m_180
1 -113.9029 1.072505 8.772007 79.14803
2 -115.0644 1.077914 8.986393 78.96014
3 -114.6958 1.077130 9.679812 79.18771
set.seed(2000)
rnorm(n = 1, mean = 79.14803, sd = 8.772007)
71.65811
rnorm(n = 1, mean = 78.96014, sd = 8.986393)
75.78894
rnorm(n = 1, mean = 79.18771, sd = 9.679812)
87.80419
Bayesian Modeling with RJAGS