Bayesian Modeling with RJAGS
Alicia Johnson
Associate Professor, Macalester College
my_model <- "model{
# Likelihood model
for(i in 1:length(Y)) {
Y[i] ~ dnorm(m, s^(-2))
}
# Prior models
m ~ dnorm(...)
s ~ dunif(...)
}"
my_model <- "model{
# Likelihood model
for(i in 1:length(Y)) {
Y[i] ~ dnorm(m[i], s^(-2))
m[i] <- a + b * X[i]
}
# Prior models
a ~ dnorm(...)
b ~ dnorm(...)
s ~ dunif(...)
}"
my_model <- "model{
# Likelihood model
for(i in 1:length(Y)) {
Y[i] ~ dnorm(m[i], s^(-2))
m[i] <- a + b[X[i]]
}
# Prior models
a ~ dnorm(...)
b[1] <- 0
b[2] ~ dnorm(...)
s ~ dunif(...)
}"
my_model <- "model{
# Likelihood model
for(i in 1:length(Y)) {
Y[i] ~ dnorm(m[i], s^(-2))
m[i] <- a + b[X[i]] + c * Z[i]
}
# Prior models
a ~ dnorm(...)
b[1] <- 0
b[2] ~ dnorm(...)
c ~ dnorm(...)
s ~ dunif(...)
}"
my_model <- "model{
# Likelihood model
for(i in 1:length(Y)) {
Y[i] ~ dpois(l[i])
log(l[i]) <- a + b[X[i]] + c*Z[i]
}
# Prior models
a ~ dnorm(...)
b[1] <- 0
b[2] ~ dnorm(...)
c ~ dnorm(...)
}"
Bayesian Modeling with RJAGS