Bayesian Modeling with RJAGS
Alicia Johnson
Associate Professor, Macalester College
Explore foundational, generalizable Bayesian models (eg: Beta-Binomial, Normal-Normal, and Bayesian regression)
Define, compile, and simulate Bayesian models using RJAGS
Conduct Bayesian posterior inference using RJAGS output
A Bayesian posterior model:
$$p \sim \text{Beta}(45, 55)$$
Bayesian Modeling with RJAGS