Structural Equation Modeling with lavaan in R
Erin Buchanan
Professor
visual.model <- 'visual =~ x1 + x2 + x3 + x7 + x8 + x9'
visual.fit <- cfa(model = visual.model,
data = HolzingerSwineford1939)
summary(visual.fit, standardized = TRUE,
fit.measures = TRUE)
User model versus baseline model:
Comparative Fit Index (CFI) 0.701
Tucker-Lewis Index (TLI) 0.502
visual.model <- 'visual =~ x1 + x2 + x3'
visual.fit <- cfa(model = visual.model,
data = HolzingerSwineford1939)
summary(visual.fit, standardized = TRUE,
fit.measures = TRUE)
speed.model <- 'speed =~ x7 + x8 + x9'
speed.fit <- cfa(model = speed.model,
data = HolzingerSwineford1939)
summary(speed.fit, standardized = TRUE,
fit.measures = TRUE)
Number of observations 301
Estimator ML
Minimum Function Test Statistic 0.000
Degrees of freedom 0
Minimum Function Value 0.0000000000000
visual.model <- 'visual =~ x1 + a*x2 + a*x3'
visual.model <- 'visual =~ x1 + a*x2 + a*x3'
visual.fit <- cfa(model = visual.model,
data = HolzingerSwineford1939)
summary(visual.fit, standardized = TRUE,
fit.measures = TRUE)
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
visual =~
x1 1.000 0.745 0.639
x2 (a) 0.910 0.142 6.397 0.000 0.678 0.562
x3 (a) 0.910 0.142 6.397 0.000 0.678 0.614
twofactor.model <- 'visual =~ x1 + x2 + x3
speed =~ x7 + x8 + x9'
twofactor.fit <- cfa(model = twofactor.model,
data = HolzingerSwineford1939)
summary(twofactor.fit, standardized = TRUE,
fit.measures = TRUE)
Degrees of freedom 8
P-value (Chi-square) 0.000
Structural Equation Modeling with lavaan in R