Structural Equation Modeling with lavaan in R
Erin Buchanan
Professor
epi.model <- 'extraversion =~ V3 + V7 + V11 + V15
neuroticism =~ V1 + V5 + V9 + V13
lying =~ V4 + V8 + V12 + V16'
epi.fit <- cfa(model = epi.model, data = epi)
Warning message:
In lav_object_post_check(object) :
lavaan WARNING: covariance matrix of latent variables
is not positive definite;
use inspect(fit,"cov.lv") to investigate.
summary(epi.fit, standardized = TRUE,
fit.measures = TRUE)
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
extraversion ~~
neuroticism -0.011 0.002 -6.822 0.000 -0.894 -0.894
lying -0.012 0.002 -6.801 0.000 -0.777 -0.777
neuroticism ~~
lying 0.012 0.002 7.023 0.000 0.982 0.982
#original model
epi.model <- 'extraversion =~ V3 + V7 + V11 + V15
neuroticism =~ V1 + V5 + V9 + V13
lying =~ V4 + V8 + V12 + V16'
#respecify the model
epi.model2 <- 'extraversion =~ V3 + V7 + V11 + V15
neuroticism_lie =~ V1 + V5 + V9 + V13 + V4 + V8 + V12 + V16'
epi.fit2 <- cfa(model = epi.model2, data = epi)
summary(epi.fit2, standardized = T, fit.measures = T)
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
extraversion ~~
neuroticism_li -0.011 0.002 -6.939 0.000 -0.843 -0.843
Structural Equation Modeling with lavaan in R