Differential expression data

Differential Expression Analysis with limma in R

John Blischak

Instructor

The experimental data

  1. Study of breast cancer

    • Bioconductor package "breastCancerVDX"
    • Published in Wang et al., 2005 and Minn et al., 2007
    • 344 patients: 209 ER+, 135 ER-
  2. Study of chronic lymphocytic leukemia (CLL)

    • Bioconductor package "CLL"
    • Drs. Sabina Chiaretti and Jerome Ritz
    • 22 patients: 8 stable, 14 progressive
Differential Expression Analysis with limma in R

Data in R

  • Expression matrix (x)

  • Feature data (f) - feature attributes

  • Phenotype data (p) - sample attributes

Differential Expression Analysis with limma in R

Expression matrix

rows = features, columns = samples

class(x)
"matrix"
dim(x)
22283   344

 

x[1:5, 1:5]
              VDX_3     VDX_5     VDX_6
1007_s_at 11.965135 11.798593 11.777625
1053_at    7.895424  7.885696  7.949535
117_at     8.259272  7.052025  8.225930
Differential Expression Analysis with limma in R

Feature data

rows = features, columns = any number of attributes

class(f)
"data frame"
dim(f)
22283   3

 

 

f[1:3, ]
          symbol entrez   chrom
1007_s_at   DDR1    780  6p21.3
1053_at     RFC2   5982 7q11.23
117_at     HSPA6   3310    1q23
Differential Expression Analysis with limma in R

Phenotype data

rows = samples, columns = any number of attributes

class(p)
"data frame"
dim(p)
344   3

 

 

# er = +/- for Estrogen Receptor
p[1:3, ]
      id age       er
VDX_3  3  36 negative
VDX_5  5  47 positive
VDX_6  6  44 negative
Differential Expression Analysis with limma in R

Visualize gene expression with a boxplot

boxplot(<y-axis> ~ <x-axis>, main = "<title>")

boxplot(<gene expression> ~ <phenotype>, main = "<feature>")
boxplot(x[1, ] ~ p[, "er"], main = f[1, "symbol"])

Differential Expression Analysis with limma in R

Let's practice!

Differential Expression Analysis with limma in R

Preparing Video For Download...