Studies with more than two groups

Differential Expression Analysis with limma in R

John Blischak

Instructor

A study with 3 groups

  • 3 different types of leukemias: ALL, AML, CML
    • Bioconductor package: leukemiasEset
    • Kohlmann et al. 2008, Haferlach et al. 2010
dim(eset)
Features  Samples
   20172       36
table(pData(eset)[, "type"])
ALL AML CML
 12  12  12
Differential Expression Analysis with limma in R

Group-means model for 3 groups

$$ Y = \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon $$

  • $\beta_1$ - Mean expression level in group ALL
  • $\beta_2$ - Mean expression level in group AML
  • $\beta_3$ - Mean expression level in group CML
  • Tests:
    • AML v. ALL: $\beta_2 - \beta_1 = 0$
    • CML v. ALL: $\beta_3 - \beta_1 = 0$
    • CML v. AML: $\beta_3 - \beta_2 = 0$
Differential Expression Analysis with limma in R

Group-means design matrix for 3 groups

design <- model.matrix(~0 + type, 
                       data = pData(eset))

head(design, 3)
          typeALL typeAML typeCML
sample_01       1       0       0
sample_02       1       0       0
sample_03       1       0       0
colSums(design)
typeALL typeAML typeCML
     12      12      12
Differential Expression Analysis with limma in R

Contrasts matrix for 3 groups

  • AML v. ALL: $\beta_2 - \beta_1 = 0$
  • CML v. ALL: $\beta_3 - \beta_1 = 0$
  • CML v. AML: $\beta_3 - \beta_2 = 0$

 

library(limma)
cm <- makeContrasts(AMLvALL = typeAML - typeALL,
                    CMLvALL = typeCML - typeALL,
                    CMLvAML = typeCML - typeAML,
                    levels = design)

 

 

 

cm
         Contrasts
Levels    AMLvALL CMLvALL CMLvAML
  typeALL      -1      -1       0
  typeAML       1       0      -1
  typeCML       0       1       1
Differential Expression Analysis with limma in R

Testing 3 groups

library(limma)
# Fit coefficients
fit <- lmFit(eset, design)

# Fit contrasts
fit2 <- contrasts.fit(fit, contrasts = cm)

# Calculate t-statistics
fit2 <- eBayes(fit2)

# Summarize results
results <- decideTests(fit2)
summary(results)
   AMLvALL CMLvALL CMLvAML
-1     898    3401    1890
0    18323   13194   16408
1      951    3577    1874
Differential Expression Analysis with limma in R

The effect of hypoxia on stem cell function

  • 3 different levels of oxygen: 1%, 5%, 21%
    • Bioconductor package: stemHypoxia
    • Prado-Lopez et al. 2010
dim(eset)
Features  Samples
   15325        6
table(pData(eset)[, "oxygen"])
ox01 ox05 ox21
   2    2    2
Differential Expression Analysis with limma in R

Let's practice!

Differential Expression Analysis with limma in R

Preparing Video For Download...