Differential Expression Analysis with limma in R
John Blischak
Instructor
pval <- numeric(length = nrow(x))
r2 <- numeric(length = nrow(x))
for (i in 1:nrow(x)) {
mod <- lm(x[i, ] ~ p[, "er"])
result <- summary(mod)
pval[i] <- result$coefficients[2, 4]
r2[i] <- result$r.squared
}
Improved inference by sharing information across genes
Lots of functions for pre- and post-processing (see Ritchie et al., 2015 for an overview)
biocManager::install("limma")
$$ Y = \beta_0 + \beta_1 X_1 + \epsilon $$
model.matrix(~<explanatory>, data = <data frame>)
design <- model.matrix(~er, data = pData(eset))
head(design, 2)
(Intercept) erpositive
VDX_3 1 0
VDX_5 1 1
colSums(design)
(Intercept) erpositive
344 209
table(pData(eset)[, "er"])
negative positive
135 209
library(limma)
# Fit the model
fit <- lmFit(eset, design)
# Calculate the t-statistics
fit <- eBayes(fit)
# Summarize results
results <- decideTests(fit[, "er"])
summary(results)
erpositive
-1 6276
0 11003
1 5004
Differential Expression Analysis with limma in R