Factor Analysis in R
Jennifer Brussow
Psychometrician
# Run the EFA with six factors (as indicated by your scree plot) EFA_model <- fa(bfi_EFA, nfactors = 6)
# View results from the model object EFA_model
Factor Analysis using method = minres
Call: fa(r = bfi_EFA, nfactors = 6)
Standardized loadings (pattern matrix) based upon correlation matrix
MR2 MR1 MR3 MR5 MR4 MR6 h2 u2 com
A1 0.10 -0.09 0.07 -0.56 0.11 0.28 0.35 0.65 1.8
A2 0.05 -0.01 0.08 0.69 -0.02 0.01 0.49 0.51 1.0
A3 -0.04 -0.13 0.03 0.57 0.11 0.09 0.47 0.53 1.3
A4 -0.05 -0.08 0.19 0.35 -0.07 0.19 0.25 0.75 2.5
A5 -0.17 -0.20 0.00 0.42 0.20 0.17 0.46 0.54 2.7
C1 0.01 0.07 0.54 -0.07 0.21 0.07 0.35 0.65 1.4
C2 0.09 0.14 0.63 0.01 0.17 0.16 0.46 0.54 1.4
...
EFA_model$loadings
Loadings:
MR2 MR1 MR3 MR5 MR4 MR6
A1 -0.559 0.109 0.285
A2 0.685
A3 -0.129 0.569 0.113
A4 0.193 0.348 0.189
A5 -0.172 -0.200 0.421 0.201 0.166
C1 0.542 0.214
C2 0.138 0.631 0.170 0.157
C3 0.128 0.532 0.110
C4 -0.683 0.118 0.229
C5 0.103 0.172 -0.599 0.131
E1 -0.158 0.589 0.133 -0.116 0.106
E2 0.694
E3 -0.343 0.104 0.468
E4 -0.565 0.184 0.255
E5 0.171 -0.408 0.275 0.216
head(EFA_model$scores)
MR2 MR1 MR3 MR5 MR4 MR6
65237 NA NA NA NA NA NA
61825 0.4731267 2.21345215 -2.7650759 -2.72096751 -0.9357389 -1.54036174
67417 0.5217166 0.15834190 -2.1790559 0.47053433 0.4909513 -0.49268634
62051 -1.3333104 -1.32520518 1.0266578 -0.07063958 -0.3670002 -0.07978805
63767 -1.6844911 -1.45769993 1.7776350 1.01101859 0.7490857 -0.35677764
66734 -0.7014448 0.06174358 -0.3530992 -0.05968920 -0.4435187 -0.75311430
Factor Analysis in R