Factor Analysis in R
Jennifer Brussow
Psychometrician
psycho = "of the mind"
metrics = "related to measurement"
Classical Test Theory: Scores are the unweighted sum of item scores.
Factor Analysis: Scores are an empirically weighted sum of item scores, where weights are determined by the items' correlations to each other.
Structural Equation Modeling: Extends factor analyses to allow the relationships between latent variables to be modeled.
Exploratory Factor Analysis (EFA):
Confirmatory Factor Analysis (CFA):
Package: The psych
package
library(psych)
The gcbs
dataset: Generic Conspiracist Beliefs Survey
str(gcbs)
'data.frame': 2495 obs. of 15 variables:
$ Q1 : int 5 5 2 5 5 1 4 5 1 1 ...
$ Q2 : int 5 5 4 4 4 1 3 4 1 2 ...
$ Q3 : int 3 5 1 1 1 1 3 3 1 1 ...
$ Q4 : int 5 5 2 2 4 1 3 3 1 1 ...
$ Q5 : int 5 5 2 4 4 1 4 4 1 1 ...
...
More information in Brotherton, French, & Pickering (2013)
EFA_model <- fa(gcbs)
fa.diagram(EFA_model)
EFA_model$loadings
Loadings:
MR1
Q1 0.703
Q2 0.719
Q3 0.638
Q4 0.770
Q5 0.672
Q6 0.746
Q7 0.734
Q8 0.654
Q9 0.695
Q10 0.565
...
Factor Analysis in R