Investigating model fit

Factor Analysis in R

Jennifer Brussow

Psychometrician

Default fit statistics

Chi-square test (aka the log likelihood test) is only default

summary(theory_CFA)
 Model Chisquare =  2231.647   Df =  265 Pr(>Chisq) = 1.695873e-307
  • Often significant due to sample size
  • Desired outcome is lack of significance
Factor Analysis in R

Changing the options

options(fit.indices = c("CFI", "GFI", "RMSEA", "BIC"))
  • RMSEA < 0.05
  • GFI (Goodness of Fit Index) > 0.90
  • CFI (Comparative Fit Index) > 0.90
Factor Analysis in R

Absolute model fit

summary(theory_CFA)
 Model Chisquare =  2305.159   Df =  271 Pr(>Chisq) = 0

Goodness-of-fit index = 0.8527977
RMSEA index = 0.07815051 90% CI: (NA, NA)
Bentler CFI = 0.7754574
Factor Analysis in R

Relative fit

summary(theory_CFA)
 Model Chisquare =  2305.159   Df =  271 Pr(>Chisq) = 8.422189e-319
 Goodness-of-fit index =  0.8527977
 RMSEA index =  0.07815051   90% CI: (NA, NA)
 Bentler CFI =  0.7754574
 BIC =  377.0563
summary(theory_CFA)$BIC
326.618
Factor Analysis in R

Relative fit: comparing models

summary(theory_CFA)$BIC
326.618
# Run a CFA using the EFA syntax you created earlier
EFA_CFA <- sem(EFA_syn, data = bfi_CFA)
summary(EFA_CFA)$BIC
377.0563
  • Useful for nested models that are fit to the same dataset
  • Don't use if these conditions are not met!
Factor Analysis in R

Let's practice!

Factor Analysis in R

Preparing Video For Download...