Factor Analysis in R
Jennifer Brussow
Psychometrician
Chi-square test (aka the log likelihood test) is only default
summary(theory_CFA)
Model Chisquare = 2231.647 Df = 265 Pr(>Chisq) = 1.695873e-307
options(fit.indices = c("CFI", "GFI", "RMSEA", "BIC"))
summary(theory_CFA)
Model Chisquare = 2305.159 Df = 271 Pr(>Chisq) = 0
Goodness-of-fit index = 0.8527977
RMSEA index = 0.07815051 90% CI: (NA, NA)
Bentler CFI = 0.7754574
summary(theory_CFA)
Model Chisquare = 2305.159 Df = 271 Pr(>Chisq) = 8.422189e-319
Goodness-of-fit index = 0.8527977
RMSEA index = 0.07815051 90% CI: (NA, NA)
Bentler CFI = 0.7754574
BIC = 377.0563
summary(theory_CFA)$BIC
326.618
summary(theory_CFA)$BIC
326.618
# Run a CFA using the EFA syntax you created earlier
EFA_CFA <- sem(EFA_syn, data = bfi_CFA)
summary(EFA_CFA)$BIC
377.0563
Factor Analysis in R