Preparing the predictor insight graph table

Introduction to Predictive Analytics in Python

Nele Verbiest, Ph.D

Data Scientist @PythonPredictions

The predictor insight graph table

disc_mean_gift Incidence Size
[2, 78] 0.013042 20013
(78, 87] 0.029554 19997
(87, 94] 0.040831 20034
(94, 103] 0.063563 20405
(103, 197] 0.103524 19551
Introduction to Predictive Analytics in Python

Calculating the predictor insight graph table

# Load the numpy module
import numpy as np
# Function that calculates the predictor insight graph table
def create_pig_table(df, target, variable):

# Group by the variable you want to plot groups = df[[target,variable]].groupby(variable)
# Calculate the size and incidence of each group pig_table = groups[target].agg(Incidence = 'mean').reset_index() return pig_table
print(create_pig_table(basetable,"target","country")
country    Incidence    Size
India    0.050934    49849
UK    0.050512    10057
USA    0.048486    40094
Introduction to Predictive Analytics in Python

Calculating multiple predictor insight graph tables

variables = ["country", "gender", "disc_mean_gift", "age"]

# Empty dictionary. pig_tables = {}
# Loop over all variables for variable in variables:
# Create the predictor insight graph table pig_table = create_pig_table(basetable, "target", variable)
# Store the table in the dictionary pig_tables[variable] = pig_table
print(create_pig_table(basetable,"target","country")
country    Incidence    Size
India    0.050934    49849
UK    0.050512    10057
USA    0.048486    40094
Introduction to Predictive Analytics in Python

Let's practice!

Introduction to Predictive Analytics in Python

Preparing Video For Download...