Choice models - under the hood

Choice Modeling for Marketing in R

Elea McDonnell Feit

Assistant Professor of Marketing, Drexel University

Multinomial logit model

v1 <- alpha * 4 + beta * 100 
v2 <- alpha * 5 + beta * 150 
v3 <- alpha * 2 + beta * 175
u1 <- v1 + error1
u2 <- v2 + error2
u3 <- v3 + error3
choice <- which.max(c(u1, u2, u3))
p1 <- exp(v1) / ( exp(v1) + exp(v2) + exp(v3) )
p2 <- exp(v2) / ( exp(v1) + exp(v2) + exp(v3) )
p3 <- exp(v3) / ( exp(v1) + exp(v2) + exp(v3) )
Choice Modeling for Marketing in R

Estimating a multinomial logit model with mlogit()

m1 <- mlogit(choice ~ 0 + seat + price, data = sportscar, print.level = 3)
Initial value of the function : 2197.22457733622 
iteration 1, step = 1, lnL = 1918.11271719, chi2 = 534.02624615
            seat   price
param      0.100  -0.151
gradient -24.028 296.443
 ----------------------------------------
iteration 2, step = 1, lnL = 1915.29601553, chi2 = 5.51592264
           seat  price
param     0.114 -0.168
gradient -0.846  9.422
 ----------------------------------------
iteration 3, step = 1, lnL = 1915.29299604, chi2 = 0.00603424
           seat  price
param     0.114 -0.169
gradient -0.001  0.011
Choice Modeling for Marketing in R
summary(m1)
Call:
mlogit(formula = choice ~ 0 + seat + price, data = sportscar, 
    print.level = 3, method = "nr")
Frequencies of alternatives:
    1     2     3 
0.328 0.327 0.345 
nr method
4 iterations, 0h:0m:0s 
g'(-H)^-1g = 0.00603 
successive function values within tolerance limits 
Coefficients :
        Estimate Std. Error  z-value  Pr(>|z|)    
seat   0.1143487  0.0234195   4.8826 1.047e-06 ***
price -0.1687046  0.0079224 -21.2947 < 2.2e-16 ***
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Log-Likelihood: -1915.3
Choice Modeling for Marketing in R

mlogit.data objects

sportscar <- mlogit.data(sportscar.df, shape = "long",
                         choice = "choice",
                         varying = 5:8, alt.var = "alt")
Choice Modeling for Marketing in R

Let's fit some choice models to the chocolate data!

Choice Modeling for Marketing in R

Preparing Video For Download...