Choice Modeling for Marketing in R
Elea McDonnell Feit
Assistant Professor of Marketing, Drexel University
for (i in 1:n_resp) { beta[i] <- mvrnorm(1, beta_0, Sigma) # Random normal vector
for (j in 1:n_task[i]) {
X <- X[X$resp == i & X$task == j, ] u <- X %*% beta[i] p[i,] <- exp(u) / sum(exp(u))
}
}
sportscar <- mlogit.data(sportscar, choice = "choice", shape = "long", varying = 5:8, alt.var = "alt", id.var = "resp_id")
m7 <- mlogit(choice ~ 0 + seat + trans + convert + price, data = sportscar, rpar = c(price = "n"), panel = TRUE)
summary(m7)
...
Coefficients :
Estimate Std. Error z-value Pr(>|z|)
seat4 -0.0185815 0.0762964 -0.2435 0.8075843
seat5 0.4259317 0.0751681 5.6664 1.458e-08 ***
transmanual -1.2206527 0.0650133 -18.7754 < 2.2e-16 ***
convertyes 0.2013760 0.0603982 3.3341 0.0008556 ***
price -0.1914656 0.0092325 -20.7382 < 2.2e-16 ***
sd.price 0.0230365 0.0327214 0.7040 0.4814209
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Log-Likelihood: -1709.8
random coefficients
Min. 1st Qu. Median Mean 3rd Qu. Max.
price -Inf -0.2070035 -0.1914656 -0.1914656 -0.1759277 Inf
...
plot(m7)
Choice Modeling for Marketing in R