Choice Modeling for Marketing in R
Elea McDonnell Feit
Assistant Professor of Marketing, Drexel University
Dummy coding (what we've been doing)
seat4 seat5
2 0 0
4 1 0
5 0 1
Effects coding (better for hierarchical models)
seat4 seat5
2 -1 -1
4 1 0
5 0 1
contrasts(sportscar$seat) <- contr.sum(levels(sportscar$seat))
dimnames(contrasts(sportscar$seat))[[2]] <- levels(sportscar$seat)[1:2]
contrasts(sportscar$seat)
4 5
2 -1 -1
4 1 0
5 0 1
my_rpar <- c("n", "n", "n", "n", "n")
m3 <- mlogit(choice ~ 0 + seat + trans + convert + price, data = sportscar) names(my_rpar) <- names(m3$coefficients)
my_rpar
seat4 seat5 transmanual convertyes price
"n" "n" "n" "n" "n"
m8 <- mlogit(choice ~ 0 + seat + trans + convert + price,
data = sportscar,
panel = TRUE, rpar = my_rpar)
m8 <- mlogit(choice ~ 0 + seat + trans + convert + price,
data = sportscar,
panel = TRUE, rpar = my_rpar)
plot(m8, par = c("seat4", "seat5")
m8$coef[1:2]
seat4 seat5
-0.1852167 0.3519204
-sum(m8$coef[1:2])
-0.1667037
Choice Modeling for Marketing in R