Interpreting choice model parameters

Choice Modeling for Marketing in R

Elea McDonnel Feit

Assistant Professor of Marketing, Drexel University

Multinomial logit model parameters

m1 <- mlogit(choice ~ 0 + seat + price, data=sportscar)
summary(m1)
...

Coefficients :
        Estimate Std. Error  z-value  Pr(>|z|)    
seat   0.1143487  0.0234195   4.8826 1.047e-06 ***
price -0.1687046  0.0079224 -21.2947 < 2.2e-16 ***

...
Choice Modeling for Marketing in R

Multinomial logit model

alpha <- 0.1143487
beta <- -0.1687046

v1 <- alpha * seat1 + beta * price1 v2 <- alpha * seat2 + beta * price2 v3 <- alpha * seat3 + beta * price3 p1 <- exp(v1) / ( exp(v1) + exp(v2) + exp(v3) ) p2 <- exp(v2) / ( exp(v1) + exp(v2) + exp(v3) ) p3 <- exp(v3) / ( exp(v1) + exp(v2) + exp(v3) )
Choice Modeling for Marketing in R

Using factors as predictors

m2 <- mlogit(choice ~ 0 + seat + price + trans + convert, 
             data = sportscar)
summary(m2)
... 

Coefficients :
              Estimate Std. Error  z-value  Pr(>|z|)    
seat         0.1201748  0.0248393   4.8381 1.311e-06 ***
price       -0.1895992  0.0086355 -21.9559 < 2.2e-16 ***
transmanual -1.2122404  0.0662971 -18.2850 < 2.2e-16 ***
convertyes   0.1932630  0.0618676   3.1238  0.001785 ** 
...
Choice Modeling for Marketing in R
head(model.matrix(m2))
    seat price transmanual convertyes
1.1    2    35           1          1
1.2    5    40           0          0
1.3    5    30           0          0
2.1    5    35           1          0
2.2    2    30           1          0
2.3    4    35           0          0
head(sportscar)
    resp_id ques alt segment seat  trans convert price choice
1.1       1    1   1   basic    2 manual     yes    35  FALSE
1.2       1    1   2   basic    5   auto      no    40  FALSE
1.3       1    1   3   basic    5   auto      no    30   TRUE
2.1       1    2   1   basic    5 manual      no    35  FALSE
2.2       1    2   2   basic    2 manual      no    30   TRUE
2.3       1    2   3   basic    4   auto      no    35  FALSE
Choice Modeling for Marketing in R

Interpreting coefficients for factors

m2 <- mlogit(choice ~ 0 + seat + price + trans + convert, 
             data = sportscar)
summary(m2)
... 
Coefficients :
              Estimate Std. Error  z-value  Pr(>|z|)    
seat         0.1201748  0.0248393   4.8381 1.311e-06 ***
price       -0.1895992  0.0086355 -21.9559 < 2.2e-16 ***
transmanual -1.2122404  0.0662971 -18.2850 < 2.2e-16 ***
convertyes   0.1932630  0.0618676   3.1238  0.001785 ** 
...
Choice Modeling for Marketing in R

Treating numeric predictors as factors

sportscar$seat <- as.factor(sportscar$seat)
m3 <- mlogit(choice ~ 0 + seat + trans + convert + price, 
             data = sportscar)
summary(m3)
Coefficients :
              Estimate Std. Error  z-value  Pr(>|z|)    
seat4       -0.0193861  0.0759029  -0.2554  0.798409    
seat5        0.4245449  0.0752808   5.6395 1.706e-08 ***
transmanual -1.2178833  0.0665276 -18.3064 < 2.2e-16 ***
convertyes   0.2008115  0.0620854   3.2344  0.001219 ** 
price       -0.1907023  0.0086739 -21.9859 < 2.2e-16 ***
Choice Modeling for Marketing in R

Willingness to pay (WTP)

coef(m3)
seat4       seat5 transmanual  convertyes       price 
-0.01938614  0.42454491 -1.21788327  0.20081149 -0.19070229
coef(m3) / -coef(m3)[5]
seat4       seat5 transmanual  convertyes       price 
 -0.1016566   2.2262181  -6.3863063   1.0530103  -1.0000000
Choice Modeling for Marketing in R

Let's interpret the parameters of the chocolate model!

Choice Modeling for Marketing in R

Preparing Video For Download...