Categorical Data in the Tidyverse
Emily Robinson
Instructor
job_titles_by_perc
# A tibble: 16 x 2
CurrentJobTitleSelect perc_w_title
<chr> <dbl>
1 Business Analyst 0.0673
2 Computer Scientist 0.0283
3 Data Analyst 0.103
4 Data Miner 0.00997
5 Data Scientist 0.206
6 DBA/Database Engineer 0.0158
ggplot(job_titles_by_perc,
aes(x = CurrentJobTitleSelect,, y = perc_w_title)) +
geom_point()
ggplot(job_titles_by_perc,
aes(x = CurrentJobTitleSelect, y = perc_w_title)) +
geom_point() +
theme(axis.text.x = element_text(angle = 90, hjust = 1))
ggplot(job_titles_by_perc,
aes(x = fct_reorder(CurrentJobTitleSelect, perc_w_title),
y = perc_w_title)) +
geom_point() +
theme(axis.text.x = element_text(angle = 90, hjust = 1))
ggplot(job_titles_by_perc,
aes(x = fct_rev(fct_reorder(CurrentJobTitleSelect,
perc_w_title)), y = perc_w_title)) +
geom_point() +
theme(axis.text.x = element_text(angle = 90, hjust = 1))
ggplot(job_titles_by_perc,
aes(x = fct_rev(fct_reorder(CurrentJobTitleSelect, perc_w_title)),
y = perc_w_title)) +
geom_point() +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
labs(x = "Job Title", y = "Percent with title")
ggplot(job_titles_by_perc,
aes(x=fct_rev(fct_reorder(CurrentJobTitleSelect,perc_w_title)),
y=perc_w_title)) +
geom_point() +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
labs(x = "Job Title", y = "Percent with title") +
scale_y_continuous(labels = scales::percent_format())
Categorical Data in the Tidyverse