Multivariate Probability Distributions in R
Surajit Ray
Professor, University of Glasgow
summary(cars.pca)
Importance of components:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9
Standard deviation 2.378 1.443 0.710 0.5148 0.4280 0.3518 0.3241 0.2419 0.14896
Proportion of Variance 0.628 0.231 0.056 0.0294 0.0204 0.0138 0.0117 0.0065 0.00247
Cumulative Proportion 0.628 0.860 0.916 0.9453 0.9656 0.9794 0.9910 0.9975 1.00000
Method 1
Proportion of variation explained
screeplot(cars.pca, type = "lines")
Choice based on
Method 2
summary(cars.pca)
Importance of components:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9
Standard deviation 2.378 1.443 0.710 0.5148 0.4280 0.3518 0.3241 0.2419 0.14896
Proportion of Variance 0.628 0.231 0.056 0.0294 0.0204 0.0138 0.0117 0.0065 0.00247
Cumulative Proportion 0.628 0.860 0.916 0.9453 0.9656 0.9794 0.9910 0.9975 1.00000
Cumulative proportion
# Variance explained
pc.var <- cars.pca$sdev^2
# Proportion of variation
pc.pvar <- pc.var / sum(pc.var)
# Cumulative proportion
plot(cumsum(pc.pvar), type = 'b')
abline(h = 0.9, lty = 2)
Cumulative proportion
# Variance explained
pc.var <- cars.pca$sdev^2
# Proportion of variation
pc.pvar <- pc.var / sum(pc.var)
# Cumulative proportion
plot(cumsum(pc.pvar), type = 'b')
abline(h = 0.9, lty = 2)
3 PCs explain 90 percent of the variation
Multivariate Probability Distributions in R