Multivariate Probability Distributions in R
Surajit Ray
Professor, University of Glasgow
qqnorm(iris_raw[, 1])
qqline(iris_raw[, 1])
qqnorm(iris_raw[, 1])
qqline(iris_raw[, 1])
If the values lie along the reference line the distribution is close to normal
Deviation from the line might indicate
mvn(iris_raw[, 1:4], univariatePlot = "qqplot")
MVN version 5.9
Multivariate normality tests by
Graphical appoaches
Multivariate normality tests by
Graphical appoaches
mvn(iris_raw[, 1:4],mvnTest = "mardia")
$multivariateNormality
Test Statistic p value Result
1 Mardia Skewness 67.4305087780629 4.75799820400705e-07 NO
2 Mardia Kurtosis -0.230112114480775 0.818004651478188 YES
3 MVN <NA> <NA> NO
Using qqplot from Mardia Test to check multivariate normality
mvn(iris_raw[, 1:4],mvnTest = "mardia", multivariatePlot = "qq")
mvn(iris_raw[, 1:4],mvnTest = "hz")
$multivariateNormality
Test HZ p value MVN
1 Henze-Zirkler 2.3 0 NO
mvn(iris[iris$Species == "setosa", 1:4],
mvnTest = "mardia",
multivariatePlot = "qq")
$multivariateNormality
Test Statistic p value Result
1 Mardia Skewness 25.6643445196298 0.177185884467652 YES
2 Mardia Kurtosis 1.29499223711605 0.195322907441935 YES
3 MVN <NA> <NA> YES
Multivariate Probability Distributions in R