Advanced Deep Learning with Keras
Zach Deane-Mayer
Data Scientist
Dataset 1: Regular season
Dataset 2: Tournament games
import pandas as pd
games_season = pd.read_csv('datasets/games_season.csv')
games_season.head()
Out[1]:
season team_1 team_2 home score_diff score_1 score_2 won
0 1985 3745 6664 0 17 81 64 1
1 1985 126 7493 1 7 77 70 1
2 1985 288 3593 1 7 63 56 1
3 1985 1846 9881 1 16 70 54 1
4 1985 2675 10298 1 12 86 74 1
games_tourney = pd.read_csv('datasets/games_tourney.csv')
games_tourney.head()
Out[2]:
season team_1 team_2 home seed_diff score_diff score_1 score_2 won
0 1985 288 73 0 -3 -9 41 50 0
1 1985 5929 73 0 4 6 61 55 1
2 1985 9884 73 0 5 -4 59 63 0
3 1985 73 288 0 3 9 50 41 1
4 1985 3920 410 0 1 -9 54 63 0
Two fundamental parts:
from tensorflow.keras.layers import Input
input_tensor = Input(shape=(1,))
from tensorflow.keras.layers import Input
input_tensor = Input(shape=(1,))
print(input_tensor)
KerasTensor(type_spec=TensorSpec(shape=(None, 1), dtype=tf.float32, name='input_1'), name='input_1', description="created by layer 'input_1'")
from tensorflow.keras.layers import Dense
output_layer = Dense(1)
from tensorflow.keras.layers import Dense
output_layer = Dense(1)
print(output_layer)
<keras.layers.core.dense.Dense object at 0x15df15e80>
from tensorflow.keras.layers import Input, Dense
input_tensor = Input(shape=(1,))
output_layer = Dense(1)
output_tensor = output_layer(input_tensor)
print(output_tensor)
KerasTensor(type_spec=TensorSpec(shape=(None, 1), dtype=tf.float32, name=None), name='dense_1/BiasAdd:0', description="created by layer 'dense_1'")
Advanced Deep Learning with Keras