Advanced Deep Learning with Keras
Zach Deane-Mayer
Data Scientist
from tensorflow.keras.layers import Input, Concatenate, Dense
input_tensor = Input(shape=(1,))
output_tensor = Dense(2)(input_tensor)
from tensorflow.keras.models import Model
model = Model(input_tensor, output_tensor)
model.compile(optimizer='adam', loss='mean_absolute_error')
games_tourney_train[['seed_diff', 'score_1', 'score_2']].head()
seed_diff score_1 score_2
0 -3 41 50
1 4 61 55
2 5 59 63
3 3 50 41
4 1 54 63
X = games_tourney_train[['seed_diff']]
y = games_tourney_train[['score_1', 'score_2']]
model.fit(X, y, epochs=500)
model.get_weights()
[array([[ 0.60714734, -0.5988793 ]], dtype=float32),
array([70.39491, 70.39306], dtype=float32)]
X = games_tourney_test[['seed_diff']]
y = games_tourney_test[['score_1', 'score_2']]
model.evaluate(X, y)
11.528035634635021
Advanced Deep Learning with Keras