Building Response Models in R
Kathrin Gruber
Assistant Professor of Econometrics Erasmus University Rotterdam
train.data <- subset(choice.data, subset = LASTPURCHASE == 0)
test.data <- subset(choice.data, subset = LASTPURCHASE == 1)
dim(train.data)
2498 14
dim(test.data)
300 14
train.model <- glm(HOPPINESS ~ price.ratio + FEAT.HOP + FEATDISPL.HOP,
family = binomial, data = train.data)
margins(train.model)
price.ratio FEAT.HOP FEATDISPL.HOP
-0.4703 0.05769 0.1067
Comparing the results
coef(extended.mod)
price.ratio DISPL.HOP FEAT.HOP FEATDISPL.HOP
-0.4471 0.009486 0.04973 0.1086
prob <- predict(train.model, test.data, type = "response")
predicted <- ifelse(prob >= 0.5, 1, 0) observed <- test.data$HOPPINESS
table(predicted, observed)/300
observed
predicted 0 1
0 0.923333 0.063333
1 0.006667 0.006667
Building Response Models in R