Bayesian Regression Modeling with rstanarm
Jake Thompson
Psychometrician, ATLAS, University of Kansas
stan_model <- stan_glm(kid_score ~ mom_iq, data = kidiq)
prior_summary(stan_model)
Priors for model 'stan_model'
------
Intercept (after predictors centered)
~ normal(location = 0, scale = 10)
**adjusted scale = 204.11
Coefficients
~ normal(location = 0, scale = 2.5)
**adjusted scale = 3.40
Auxiliary (sigma)
~ exponential(rate = 1)
**adjusted scale = 20.41 (adjusted rate = 1/adjusted scale)
------
See help('prior_summary.stanreg') for more details
10 * sd(y)
(2.5 / sd(x)) * sd(y)
prior_summary(stan_model)
Priors for model 'stan_model'
------
Intercept (after predictors centered)
~ normal(location = 0, scale = 10)
**adjusted scale = 204.11
Coefficients
~ normal(location = 0, scale = 2.5)
**adjusted scale = 3.40
10 * sd(kidiq$kid_score)
204.1069
(2.5 / sd(kidiq$mom_iq)) * sd(kidiq$kid_score)
3.401781
no_scale <- stan_glm(kid_score ~ mom_iq, data = kidiq,
prior_intercept = normal(autoscale = FALSE),
prior = normal(autoscale = FALSE),
prior_aux = exponential(autoscale = FALSE))
prior_summary(no_scale)
Priors for model 'no_scale'
------
Intercept (after predictors centered)
~ normal(location = 0, scale = 10)
Coefficients
~ normal(location = 0, scale = 2.5)
Auxiliary (sigma)
~ exponential(rate = 1)
------
See help('prior_summary.stanreg') for more details
Bayesian Regression Modeling with rstanarm